Learning Multi-grid Generative ConvNets by Minimal Contrastive Divergence

نویسندگان

  • Ruiqi Gao
  • Yang Lu
  • Junpei Zhou
  • Song-Chun Zhu
  • Ying Nian Wu
چکیده

This paper proposes a minimal contrastive divergence method for learning energy-based generative ConvNet models of images at multiple grids (or scales) simultaneously. For each grid, we learn an energy-based probabilistic model where the energy function is defined by a bottom-up convolutional neural network (ConvNet or CNN). Learning such a model requires generating synthesized examples from the model. Within each iteration of our learning algorithm, for each observed training image, we generate synthesized images at multiple grids by initializing the finite-step MCMC sampling from a minimal 1× 1 version of the training image. The synthesized image at each subsequent grid is obtained by a finite-step MCMC initialized from the synthesized image generated at the previous coarser grid. After obtaining the synthesized examples, the parameters of the models at multiple grids are updated separately and simultaneously based on the differences between synthesized and observed examples. We call this learning method the multi-grid minimal contrastive divergence. We show that this method can learn realistic energy-based generative ConvNet models, and it outperforms the original contrastive divergence (CD) and persistent CD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Generative ConvNets via Multi-grid Modeling and Sampling

This paper proposes a multi-grid method for learning energy-based generative ConvNet models of images. For each grid, we learn an energy-based probabilistic model where the energy function is defined by a bottom-up convolutional neural network (ConvNet or CNN). Learning such a model requires generating synthesized examples from the model. Within each iteration of our learning algorithm, for eac...

متن کامل

Training Restricted Boltzmann Machines with Overlapping Partitions

Restricted Boltzmann Machines (RBM) are energy-based models that are successfully used as generative learning models as well as crucial components of Deep Belief Networks (DBN). The most successful training method to date for RBMs is the Contrastive Divergence method. However, Contrastive Divergence is inefficient when the number of features is very high and the mixing rate of the Gibbs chain i...

متن کامل

Investigating Convergence of Restricted Boltzmann Machine Learning

Restricted Boltzmann Machines are increasingly popular tools for unsupervised learning. They are very general, can cope with missing data and are used to pretrain deep learning machines. RBMs learn a generative model of the data distribution. As exact gradient ascent on the data likelihood is infeasible, typically Markov Chain Monte Carlo approximations to the gradient such as Contrastive Diver...

متن کامل

Deep generative-contrastive networks for facial expression recognition

As the expressive depth of an emotional face differs with individuals, expressions, or situations, recognizing an expression using a single facial image at a moment is difficult. One of the approaches to alleviate this difficulty is using a video-based method that utilizes multiple frames to extract temporal information between facial expression images. In this paper, we attempt to utilize a ge...

متن کامل

Dissimilarity Based Contrastive Divergence for Anomaly Detection

This paper describes training of a Restricted Boltzmann Machine(RBM) using dissimilarity-based contrastive divergence to obtain an anomaly detector. We go over the merits of the method over other approaches and describe the method’s usefulness to obtain a generative model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.08868  شماره 

صفحات  -

تاریخ انتشار 2017